Magnetic resonance imaging (MRI) at 1.5, 3 and 7 Tesla magnetic field strength is an excellent tool to image soft tissue in the brain and body for fundamental research and clinical applications. However, the relationship between MRI contrasts and the underlying biochemistry, connectivity and cognitive processes is often not clear and currently limits the interpretation of MRI data.
Dr. Uludağ’s laboratory combines artificial intelligence approaches with 1.5 and 3T MRI big data in order to answer fundamental neuroscience questions and to develop biomarkers for clinical applications. Furthermore, he uses deep learning methods and generative models to improve the effectivity of MR image acquisition and reconstruction, promising to advance our understanding of the physical and physiological basis of MRI. As Co-Director of the Slaight Family Centre for Advanced MRI at the Toronto Western Hospital, Dr. Uludağ advises the clinical research groups in their studies of the brain and spine.
In addition, the research interests of Dr. Uludağ’s laboratory include studying cognition and anatomy in the human brain using Ultra-High Field human MRI scanners (7 and 9.4 Tesla). Ultra-high field MRI is an enabling technology that is increasingly used by researchers and clinicians for human neuroimaging to ask novel questions about brain structure and function. His lab works on quantitative anatomical and functional MRI methods (for example, ASL, T1, T2*, and SWI) and applies these cutting-edge approaches on post mortem brains, healthy subjects and patients. Dr. Uludağ’s group will continue to work on 7T MRI data acquired at national and international MRI centres (specifically in Montreal, London (Ontario), Suwon (South Korea), Boston, Minneapolis and Maastricht) and perform advanced data analysis (including AI and deep learning) on this data, which is unprecedented in spatial resolution, contrast and information content.